Wednesday, June 5, 2019
The field of nuclear physics
The field of atomic physicsNuclear physics is the field of physics that studies the building blocks and interactions of atomic nuclei. The most norm every last(predicate)y known applications of atomic physics are nuclear power and nuclear weapons, but the research has provided wider applications, including those in medicine (nuclear medicine, magnetic resonance imaging), materials engineering (ion implantation) and archaeology (radiocarbon dating).The field of particle physics evolved out of nuclear physics and, for this reason, has been included under the analogous term in earlier times.The discovery of the electron by J. J. Thomson was the first indication that the atom had internal structure. At the turn of the 20th century the accepted model of the atom was J. J. Thomsons plum pudding model in which the atom was a great(p) positively aerated ball with small negatively charged electrons embedded inside of it. By the turn of the century physicists had as well discovered three types of radiation coming from atoms, which they named alpha, beta, and da Gamma radiation. Experiments in 1911 by Lise Meitner and Otto Hahn, and by James Chadwick in 1914 discovered that the beta break up spectrum was continuous sooner than discrete. That is, electrons were ejected from the atom with a range of energies, kinda than the discrete amounts of energies that were observed in gamma and alpha decays. This was a problem for nuclear physics at the time, because it indicated that power was not conserved in these decays.In 1905, Albert Einstein formulated the idea of freshet? dexterity equivalence. While the work on radioactivity by Becquerel, capital of South Dakota and Marie Curie predates this, an explanation of the source of the energy of radioactivity would impart to wait for the discovery that the effect itself was composed of smaller constituents, the nucleons.Rutherfords team discovers the nucleusIn 1907 Ernest Rutherford promulgated Radiation of the a Particle from Radium in passing through Matter1. Geiger spread out on this work in a communication to the Royal Society2 with experiments he and Rutherford had done passing a particles through air, aluminum foil and gold leaf. More work was published in 1909 by Geiger and Marsden3 and further greatly expanded work was published in 1910 by Geiger,4 In 1911-2 Rutherford went before the Royal Society to explain the experiments and propound the new possibleness of the atomic nucleus as we now understand it.The key experiment behind this announcement happened in 1909 as Ernest Rutherfords team performed a remarkable experiment in which Hans Geiger and Ernest Marsden under his lapse fired alpha particles (helium nuclei) at a thin film of gold foil. The plum pudding model predicted that the alpha particles should come out of the foil with their trajectories macrocosm at most slightly bent. Rutherford had the idea to instruct his team to look for something that shocked him to actually observe a some particles were scattered through large angles, even completely backwards, in some gaffes. He likened it to firing a bullet at tissue paper and having it bounce off. The discovery, beginning with Rutherfords analysis of the info in 1911, eventually conduct to the Rutherford model of the atom, in which the atom has a very small, very dense nucleus containing most of its mass, and consisting of heavy positively charged particles with embedded electrons in order to balance out the charge (since the neutron was unknown). As an example, in this model (which is not the modern one) nitrogen-14 consisted of a nucleus with 14 protons and 7 electrons (21 total particles), and the nucleus was surrounded by 7 more orbiting electrons.The Rutherford model worked quite well until studies of nuclear spin were carried out by Franco Rasetti at the atomic number 20 Institute of Technology in 1929. By 1925 it was known that protons and electrons had a spin of 1/2, and in the Rutherford model of nitrogen-14, 20 of the total 21 nuclear particles should have paired up to skunkcel each early(a)s spin, and the final odd particle should have left the nucleus with a net spin of 1/2. Rasetti discovered, however, that nitrogen-14 has a spin of 1.James Chadwick discovers the neutronIn 1932 Chadwick realized that radiation that had been observed by Walther Bothe, Herbert L. Becker, Ir?ne and Fr?d?ric Joliot-Curie was actually due to a so-so(p) particle of about the same mass as the proton, that he called the neutron (following a suggestion about the need for much(prenominal)(prenominal) a particle, by Rutherford). In the same year Dmitri Ivanenko suggested that neutrons were in fact spin 1/2 particles and that the nucleus contained neutrons to explain the mass not due to protons, and that there were no electrons in the nucleus only protons and neutrons. The neutron spin immediately solved the problem of the spin of nitrogen-14, as the one unpaired proton and one unpaired neutr on in this model, each contribute a spin of 1/2 in the same direction, for a final total spin of 1.With the discovery of the neutron, scientists at last could calculate what fraction of stuffing energy each nucleus had, from comparing the nuclear mass with that of the protons and neutrons which composed it. Differences between nuclear masses calculated in this way, and when nuclear reactions were measured, were found to book with Einsteins calculation of the equivalence of mass and energy to in high spirits accuracy (within 1% as of in 1934).Yukawas meson postulated to bind nucleiIn 1935 Hideki Yukawa proposed the first significant theory of the strong force to explain how the nucleus holds together. In the Yukawa interaction a virtual particle, later called a meson, mediated a force between all nucleons, including protons and neutrons. This force explained why nuclei did not disintegrate under the influence of proton disgust, and it also gave an explanation of why the attractiv e strong force had a more trammel range than the electromagnetic repulsion between protons. Later, the discovery of the pi meson showed it to have the properties of Yukawas particle.With Yukawas papers, the modern model of the atom was complete. The center of the atom contains a lactating ball of neutrons and protons, which is held together by the strong nuclear force, unless it is too large. Unstable nuclei may undergo alpha decay, in which they emit an energetic helium nucleus, or beta decay, in which they eject an electron (or positron). After one of these decays the resultant nucleus may be left in an mad state, and in this case it decays to its ground state by emitting high energy photons (gamma decay).The study of the strong and woebegone nuclear forces (the latter explained by Enrico Fermi via Fermis interaction in 1934) led physicists to collide nuclei and electrons at ever higher energies. This research became the science of particle physics, the crown jewel of which is the standard model of particle physics which unifies the strong, weak, and electromagnetic forces. forward-looking nuclear physicsMain articles Liquid-drop model and Shell modelA heavy nucleus can contain hundreds of nucleons which means that with some approximation it can be treated as a classical system, rather than a quantum-mechanical one. In the resulting liquid-drop model, the nucleus has an energy which arises partly from surface tension and partly from electrical repulsion of the protons. The liquid-drop model is able to reproduce many features of nuclei, including the general trend of binding energy with respect to mass number, as well as the phenomenon of nuclear fission.Superimposed on this classical picture, however, are quantum-mechanical effects, which can be described using the nuclear shell model, developed in large part by Maria Goeppert-Mayer. Nuclei with certain(prenominal) numbers of neutrons and protons (the magic numbers 2, 8, 20, 50, 82, 126, ) are particul arly stable, because their shells are filled.Other more complicated models for the nucleus have also been proposed, such(prenominal) as the interacting boson model, in which pairs of neutrons and protons interact as bosons, analogously to Cooper pairs of electrons.Much of current research in nuclear physics relates to the study of nuclei under organic conditions such as high spin and excitation energy. Nuclei may also have extreme shapes (similar to that of Rugby balls) or extreme neutron-to-proton ratios. Experimenters can create such nuclei using artificially induced fusion or nucleon transfer reactions, employing ion beams from an accelerator. Beams with even higher energies can be used to create nuclei at very high temperatures, and there are signs that these experiments have produced a phase transition from normal nuclear matter to a new state, the quark-gluon plasma, in which the quarks mingle with one another, rather than organism segregated in triplets as they are in neutro ns and protons.Modern topics in nuclear physicsSpontaneous changes from one nuclide to another nuclear decayMain article RadioactivityThere are 80 instalments which have at least one stable isotope (defined as isotopes never observed to decay), and in total there are about 256 such stable isotopes. However, there are thousands more well-characterized isotopes which are unstable. These radioisotopes may be unstable and decay in all timescales ranging from fractions of a second to weeks, years, or many cardinals of years.For example, if a nucleus has too few or too many neutrons it may be unstable, and allow for decay after some period of time. For example, in a help called beta decay a nitrogen-16 atom (7 protons, 9 neutrons) is converted to an oxygen-16 atom (8 protons, 8 neutrons) within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is turned into a proton and an electron and antineutrino, by the weak nuclear force. The element is transmuted to another element in the process, because while it previously had seven protons (which makes it nitrogen) it now has eight (which makes it oxygen).In alpha decay the radioactive element decays by emitting a helium nucleus (2 protons and 2 neutrons), giving another element, plus helium-4. In many cases this process continues through several steps of this kind, including other types of decays, until a stable element is formed.In gamma decay, a nucleus decays from an excited state into a lower state by emitting a gamma ray. It is then stable. The element is not changed in the process.Other more exotic decays are possible ( cope with the main article). For example, in internal conversion decay, the energy from an excited nucleus may be used to eject one of the inner orbital electrons from the atom, in a process which produces high speed electrons, but is not beta decay, and (unlike beta decay) does not transmute one element to another.Nuclear fusionMain article Nuclear fusionWhen two low mass nuclei come into very close contact with each other it is possible for the strong force to fuse the two together. It satiates a great deal of energy to push the nuclei close enough together for the strong or nuclear forces to have an effect, so the process of nuclear fusion can only take place at very high temperatures or high densities. Once the nuclei are close enough together the strong force overcomes their electromagnetic repulsion and squishes them into a new nucleus. A very large amount of energy is released when light nuclei fuse together because the binding energy per nucleon increases with mass number up until nickel-62. Stars like our sun are powered by the fusion of four protons into a helium nucleus, two positrons, and two neutrinos. The uncontrolled fusion of hydrogen into helium is known as thermonuclear runaway. Research to find an economically viable method of using energy from a controlled fusion reaction is currently being undertaken by various research est ablishments (see JET and ITER).For nuclei heavier than nickel-62 the binding energy per nucleon decreases with the mass number. It is therefore possible for energy to be released if a heavy nucleus breaks asunder into two lighter ones. This splitting of atoms is known as nuclear fission.The process of alpha decay may be thought of as a special(prenominal) type of spontaneous nuclear fission. This process produces a highly asymmetrical fission because the four particles which make up the alpha particle are peculiarly tightly bound to each other, making production of this nucleus in fission particularly likely.For certain of the heaviest nuclei which produce neutrons on fission, and which also easily dupe neutrons to initiate fission, a self-igniting type of neutron-initiated fission can be obtained, in a so-called chain reaction. (Chain reactions were known in chemistry before physics, and in fact many familiar processes like fires and chemical explosions are chemical chain react ions.) The fission or nuclear chain-reaction, using fission-produced neutrons, is the source of energy for nuclear power plants and fission type nuclear bombs such as the two that the United States used against Hiroshima and Nagasaki at the end of World War II. Heavy nuclei such as uranium and thorium may undergo spontaneous fission, but they are much more likely to undergo decay by alpha decay.For a neutron-initiated chain-reaction to occur, there must be a critical mass of the element present in a certain space under certain conditions (these conditions slow and conserve neutrons for the reactions). There is one known example of a natural nuclear fission reactor, which was active in two regions of Oklo, Gabon, Africa, over 1.5 billion years ago. Measurements of natural neutrino emission have demonstrated that or so half of the heat emanating from the Earths core results from radioactive decay. However, it is not known if any of this results from fission chain-reactions. payoff of heavy elementsAccording to the theory, as the Universe cooled after the king-size bang it eventually became possible for particles as we know them to exist. The most common particles created in the big bang which are still easily observable to us today were protons (hydrogen) and electrons (in equal numbers). Some heavier elements were created as the protons collided with each other, but most of the heavy elements we see today were created inside of stars during a series of fusion stages, such as the proton-proton chain, the CNO cycle and the triple-alpha process. Progressively heavier elements are created during the evolution of a star. Since the binding energy per nucleon peaks around iron, energy is only released in fusion processes occurring below this point. Since the creation of heavier nuclei by fusion costs energy, nature resorts to the process of neutron capture. Neutrons (due to their lack of charge) are readily absorb by a nucleus. The heavy elements are created by eit her a slow neutron capture process (the so-called s process) or by the rapid, or r process. The s process occurs in thermally pulsing stars (called AGB, or asymptotic giant branch stars) and takes hundreds to thousands of years to reach the heaviest elements of lead and bismuth. The r process is thought to occur in supernova explosions because the conditions of high temperature, high neutron flux and ejected matter are present. These stellar conditions make the successive neutron captures very fast, involving very neutron-rich species which then beta-decay to heavier elements, particularly at the so-called waiting points that correspond to more stable nuclides with closed neutron shells (magic numbers). The r process duration is typically in the range of a few seconds.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.